Patterns for continuous learning and adaptation in agentic systems
These patterns represent the cutting edge of learning mechanisms in modern agentic systems. While traditional machine learning patterns focus on model training and optimization, these patterns address how agents can learn and adapt in real-time, leveraging the unique capabilities of large language models and modern AI architectures. They are essential for creating truly intelligent and adaptive agentic systems.
A learning pattern where the agent adapts its behavior based on examples provided in the current context or prompt, without requiring parameter updates. This pattern leverages the inherent capabilities of large language models to learn from examples in real-time, making it particularly valuable for rapid adaptation and task-specific learning.
examples = [
{"input": "Translate 'Hello' to Spanish.", "output": "Hola."},
{"input": "What is 2 + 2?", "output": "4."}
]
def generate_prompt(task, examples):
prompt = ""
for ex in examples:
prompt += f"Input: {ex['input']}\nOutput: {ex['output']}\n"
prompt += f"Input: {task}\nOutput:"
return prompt
user_task = "Translate 'Goodbye' to French."
prompt = generate_prompt(user_task, examples)
llm_response = llm_agent.complete(prompt)
print(llm_response)
class MetaLearner:
def __init__(self):
self.strategies = ["few-shot", "zero-shot"]
self.history = []
def select_strategy(self, task):
# Analyze task and history to pick best strategy
return "few-shot" if task.has_examples else "zero-shot"
def learn(self, task):
strategy = self.select_strategy(task)
result = llm_agent.apply_strategy(strategy, task)
self.history.append({"task": task, "strategy": strategy, "result": result})
return result
task = Task(content="Translate 'Hello' to German.", has_examples=True)
meta_learner = MetaLearner()
result = meta_learner.learn(task)
print(result)
def self_refine(task, max_iterations=3, threshold=0.8):
output = llm_agent.complete(task)
for i in range(max_iterations):
critique = llm_agent.critique(task, output)
if critique["score"] >= threshold:
break
output = llm_agent.improve(task, output, critique)
return output
result = self_refine("Summarize the benefits of renewable energy.")
print(result)
class Memory:
def __init__(self):
self.memories = []
def store(self, experience):
self.memories.append(experience)
def retrieve(self, query):
# Return most relevant memories (simple match for demo)
return [m for m in self.memories if query in m["content"]]
memory = Memory()
memory.store({"content": "Agent completed task A."})
memory.store({"content": "User reported error on task B."})
query = "task A"
relevant = memory.retrieve(query)
print(relevant)
A learning pattern where the agent develops the ability to quickly adapt to new tasks with minimal data by learning effective learning strategies. This pattern enables agents to become more efficient learners over time, reducing the need for extensive training data for new tasks.
# Python Pseudocode for Meta-Learning
class MetaLearner:
def __init__(self):
self.strategies = ["few-shot", "zero-shot"]
self.history = []
def select_strategy(self, task):
# Analyze task and history to pick best strategy
return "few-shot" if task.has_examples else "zero-shot"
def learn(self, task):
strategy = self.select_strategy(task)
result = llm_agent.apply_strategy(strategy, task)
self.history.append({"task": task, "strategy": strategy, "result": result})
return result
task = Task(content="Translate 'Hello' to German.", has_examples=True)
meta_learner = MetaLearner()
result = meta_learner.learn(task)
print(result)
A learning pattern where the agent improves its performance by analyzing its own outputs and iteratively refining its approach through self-critique and adjustment. This pattern enables continuous improvement and quality enhancement without external supervision.
# Python Pseudocode for Self-Refinement
def self_refine(task, max_iterations=3, threshold=0.8):
output = llm_agent.complete(task)
for i in range(max_iterations):
critique = llm_agent.critique(task, output)
if critique["score"] >= threshold:
break
output = llm_agent.improve(task, output, critique)
return output
result = self_refine("Summarize the benefits of renewable energy.")
print(result)
A learning pattern where the agent uses external memory systems to store and retrieve past experiences, enabling continual learning without requiring model retraining. This pattern is crucial for maintaining context and leveraging historical knowledge in agentic systems.
# Python Pseudocode for Memory-Augmented Learning
class Memory:
def __init__(self):
self.memories = []
def store(self, experience):
self.memories.append(experience)
def retrieve(self, query):
# Return most relevant memories (simple match for demo)
return [m for m in self.memories if query in m["content"]]
memory = Memory()
memory.store({"content": "Agent completed task A."})
memory.store({"content": "User reported error on task B."})
query = "task A"
relevant = memory.retrieve(query)
print(relevant)